

2018 Controls:

Motion
Profiling

TriSonics, FRC 4003
Motion Profiling Whitepaper

A common problem in autonomous robot operation is getting the robot to follow a
potentially complicated path accurately and dependably. Many factors, such as wheel
slippage and variations in battery voltage, make this a difficult problem.

This paper outlines our solution to this problem using a technique called motion pro-
filing, which is being more frequently used in FRC robots. For instance, the Hall of Fame
team, Cheesy Poofs, FRC 254, gave a standing-room only presentation at the 2015 World
Championships (https://www.youtube.com/watch?v=8319J1BEHwM) on this topic.
The Talon SRX motor controllers recently added a “motion profiling” mode with plenty
of documentation. The Chief Delphi user “Jaci” also provides a software package called
PathFinder to help teams implement motion profiling.

Given these resources and the fact that the 2018 FRC game, Power Up, requires au-
tonomous robots to navigate across a large part of the competition field, we thought this
was a good opportunity to learn some more advanced control theory, and we’ll share
what we’ve learned here. In spite of there being free resources provided for teams, we
wanted to do it ourselves from scratch because it seemed like a good learning opportu-
nity, and we wanted to understand what was happening better so that we could debug
any problems.

In rough outline, motion profiling involves two big pieces. First, we have to create a
path or trajectory in a form that a robot can understand. Second, we need to tell the robot
how to traverse that path.

Here is a very crude implementation of motion profiling. First, create a trajectory by
placing the robot on the field and pushing it along your desired path while sampling the
encoders on the left and right drive motors at some regular interval. Second, devise a
means to “play back” these encoder readings; that is, use these readings to determine
power settings that will reproduce the encoder readings.

This is quite similar to what we will do. However, rather than pushing the robot along
a trajectory to generate the encoder readings, we will create a mathematical algorithm that
does it for us. The main idea is this:

Reliable robot performance follows from smoothness of the profile.

For instance, asking the robot to turn a sharp corner or to suddenly accelerate are tasks
that are more difficult to perform reliably. We want to create a smooth path for the robot
to move along and have the robot accelerate smoothly along this path.

Trajectory generation

We will first describe a technique for generating the path that the robot will move
along by specifying a certain number of “waypoints.” For instance, the figure on the left
below shows a number of points that are labeled K0, K1, and so on. We would like to be
able to generate a smooth path that passes through these points, as shown on the right.

K0

K1

K2

Kn

K0

K1

K2

Kn

There are several ways to tackle this problem, and none of them are perfect; we will
outline one of them here. Between each pair of points, we will move along a cubic Bezier
curve. Cubic Bezier curves are defined by four “control points,” which are often denoted
P0, P1, P2, and P3.

P0

P1

P2

P3

The curve begins at P0 and ends at P3. The relationship between P1 and P0 defines the
initial velocity, and the relationship between P2 and P3 defines the final velocity. In fact,
we may write the Bezier curve as

B(x) = (1� x)3P0 + 3x(1� x)2P1 + 3x2(1� x)P2 + x3P3

where 0  x  1. Notice that

B(0) = P0 and B(1) = P1.

Differentiating, we find that

B0(x) = � 3(1� x)2P0 + (3� 12x+ 9x2)P1 + (6x� 9x2)P2 + 3x2P3

B00(x) = 6(1� x)P0 + (�12 + 18x)P1 + (6� 18x)P2 + 6xP3

If we evaluate the first derivative at the endpoints, we find that

B0(0) = 3(P1 � P0)

B0(1) = 3(P3 � P2).

This shows how the control points P1 and P2 determine the velocities at the two end-
points.

Given the sequence of n + 1 points K0, K1, . . . , Kn, we will find n Bezier curves that
form a smooth trajectory between them. We will call these curves B0, B1, . . . , Bn�1 and
require that

Bi(0) = Ki

Bi(1) = Ki+1

B0
i(1) = B0

i+1(0)

B00
i (1) = B00

i+1(0)

In other words, each curve will begin at a waypoint and end at the next waypoint. In
addition, the velocities and accelerations of the two curves that meet at a waypoint will
be the same. In this way, we can create a smooth trajectory.

These equations will help us determine the control points for each curve. For the curve
Bi(x), we denote its control points by P i

0, P i
1, P i

2, and P i
3. The first two equations above

say that
Bi(0) = P i

0 = Ki

Bi(1) = P i
3 = Ki+1.

This says that half of the control points, namely the P i
0 and P i

3, are determined by the
waypoints.

We only need to determine the control points P i
1 and P i

2. Here we use the require-
ment that the incoming and outgoing velocities and accelerations at a waypoint equal
one another. Using the equations for the derivatives we found above, this gives

3(P i
3 � P i

2) = 3(P i+1
1 � P i+1

0)

6P i
1 � 12P i

2 + 6P i
3 = 6P i+1

0 � 12P i+1
1 + 6P i+1

2

Without too much work, we can rearrange these equations as

P i+1
1 + P i

2 = 2Ki+1

P i
1 � 2P i

2 + 2P i+1
1 � P i+1

2 = 0

The problem is that there are only 2(n � 1) equations (two for each interior waypoint) to
determine 2n unknowns. We need to add two more equations, which we do by requiring
the acceleration at the beginning and ending waypoints to be zero:

B00
0 (0) = 6P 0

0 � 12P 0
1 � 12P 0

2 = 0

B00
n�1(1) = 6P n�1

1 � 12P n�1
2 + 6P n�1

3 = 0

We now have 2n equations in 2n unknowns. If we do a bit of algebra, we can separate
the equations involving P1 from those involving P2 and find that

2P 0
1 + P 1

1 = K0 + 2K1

P i�1
1 + 4P i

1 + P i+1
1 = 4Ki + 2Ki+1 i = 1, 2, . . . , n� 2

2P n�2
1 + 7P n�1

1 = 8Kn�1 +Kn.

To find the P1, we need to solve an n ⇥ n system of equations, but this is pretty easy
because it’s tridiagonal; that is, the coefficient matrix looks like

2

66666664

2 1 0 0 0 . . . 0
1 4 1 0 0 . . . 0
0 1 4 1 0 . . . 0
0 0 1 4 1 . . . 0
...

...
...

...
...

0 0 0 0 . . . 2 7

3

77777775

.

This can be solved efficiently using Thomas’ algorithm, which produces the control points
P i
1.

The equations for P i
2 are relatively straightforward once we know the P i

1:

P i
2 = 2Ki+1 � P i+1

1 i = 0, 1, . . . , n� 2

P n�1
2 =

1

2
(Kn + P n�1

1)

At this point, we know all the control points so we completely know the trajectory on
which the robot will move.

K0

K1

K2

Kn

We created a Java program that allows us to move the waypoints and see the resulting
trajectory. This allows us to easily design trajectories to accomplish various autonomous
actions. Once the trajectory has been determined, we save the waypoints in a .csv file.

Velocity profiles

If we just turn full power to the robot on and off, we can see that the robot’s motion is
not very reliable. It will usually jerk at the beginning and end of its motion. This means
that, now that we have smooth trajectories, we want to move along them with a smoothly
changing velocity.

We can create smooth velocity profiles using some ideas from calculus. We will be
periodically updating the power settings on the drive train at regular time intervals. We
will update every �t = 10 milliseconds so we would like to determine our robot’s velocity
every �t milliseconds.

Calculus tells us how to update the position, velocity, and acceleration. At some time,
our position is s, our velocity is v, our acceleration is a, and the jerk (rate of change of the
acceleration) is j. Then we update at the next time with

s = s+ v�t

v = v + a�t

a = a+ j�t

We did some experiments with our robot by applying maximum power to the drive
train to measure its maximum velocity vmax, its maximum acceleration amax, and its max-
imum jerk jmax.

To begin, suppose that our velocity is 0 and that we would like to accelerate up to vmax.
We start with s = 0, v = 0, and a = 0. To accelerate, we set the jerk j = jmax, the largest
possible jerk. This gives us the following table of values, assuming �t = 10, which can be
continued as long as we need.

t s v a j

0 0 0 0 jmax

10 0 0 10jmax jmax

20 0 100jmax 20jmax jmax

30 1000jmax 300jmax 30jmax jmax

Once the acceleration reaches amax, we set the jerk j = 0 so that the acceleration con-
tinues to be amax. Once the velocity is near its maximum vmax, we set j = �jmax, which
causes the acceleration to decrease to zero and the velocity to smoothly arrive at vmax.
Here is the resulting graph of position, velocity, and acceleration.

Position

Velocity

Acceleration

Putting it all together

We are now able to make a smooth trajectory and a smooth velocity profile. Next, we
have to put everything together by determining where we are on the trajectory at any
given time.

To do this, we know that our trajectory is built from Bezier curves so at any instant,
we are moving along a Bezier curve B(x). Suppose that we are at the point B(x0) and
moving with velocity v, which is determined by our velocity profile. We need to update
the position on the Bezier curve to find B(x1) after �t milliseconds have passed.

Knowing the Bezier curve B(x), we can compute its derivative B0(x) and its length
|B0(x)|. In this way, we are able to keep track of where we are on the Bezier curve at any
time.

B(x0)

B0(x0)

The distance traveled during the time interval is v�t = |B0(x0)|�x, which gives

�x =
v�t

|B0(x0)|

so that
x1 = x0 +

v�t

|B0(x0)|
.

This is useful because we can keep track of our heading at every time and measure the
amount that the robot has rotated over each time interval. This tells us the robot’s angular
velocity ! at every time.

B(x0)

B0(x0)

B(x1)

B0(x1)

Our last step is to determine the velocities and positions for the left and right drive
motors, which we will call vl and vr. We know the robot’s velocity v and its angular
velocity ! at every time.

Once we had the robot, we measured its wheelbase, which is the distance between the
left and right wheels. We did this in two ways: once with a tape measure and once by
spinning the robot in place and looking at the encoder readings on the drive motors. In
this way, we found that the distance was 2r = 25.5”, and we can use r as the radius of the
robot as it rotates. If we call the differential in the the right and left velocities

vdiff = vr � vl,

then we know that vdiff is related to the angular velocity ! by

vdiff = r!.

We then set
vl = v � vdiff

vr = v + vdiff

to determine the velocities of the left and right drive motors at every time. If sl and sr are
the positions of the left and right drive motors, we update these positions by

sl = sl + vl�t

sr = sr + vr�t.

We now save all this information in a profile .csv file with five entries per line, which
are left position, left velocity, right position, right velocity, and heading. Each row corre-
sponds to one instance in time. A typical portion of a profile .csv file looks like this:

206.3249,0.5758,189.7543,0.2882,-38.44

206.8938,0.5620,190.0494,0.3020,-39.09

207.4663,0.5832,190.3409,0.2808,-39.76

208.0420,0.5682,190.6292,0.2958,-40.45

208.6204,0.5884,190.9148,0.2756,-41.14

209.2009,0.5726,191.1983,0.2914,-41.85

209.7831,0.5919,191.4801,0.2721,-42.57

210.3667,0.5752,191.7605,0.2888,-43.29

210.9512,0.5939,192.0400,0.2701,-44.02

We put all this information together with a Python program we created. This program
takes the waypoints and velocity information and generates the profile .csv file using
the approach described above.

Controlling the robot

Finally, we need to use all this information to control the robot. We first store all
the .csv files on the Roborio so they can be read into the robot project when needed.
To execute the profile, we use a Notifier that fires every �t = 10 milliseconds and
processes one line of our .csv file.

At every time, we know the left and right positions and velocities sl, vl, sr, and vr, and
✓, the heading.

We know that full power corresponds to a velocity of vmax so our first guess for the
left and right powers Pl and Pr is

Pl =
vl

vmax

Pr =
vr

vmax
.

This is called a feed-forward term. For instance, if we want to travel at 0.5vmax, we set the
power to 0.5. We are assuming that there is a direct proportionality between the power
and the velocity, which is not usually true. We can use feedback, however, to correct the
error.

We know that the expected position on the left is sl and we can read the actual position
el from the left encoder. The error is sl � el. If sl � el > 0, then we are running behind
where we should be so we need to increase the power. We use a constant Kp, which is
really the P term of a PID controller, and set

Pl =
vl

vmax
+KP (sl � el)

Pr =
vr

vmax
+KP (sr � er).

In fact, we have more information from the heading. We can compare the desired
heading to the observed heading read from a gyro and measure an angular error �✓. We
use another proportional controller and define a constant K✓ so that we have, at last,

Pl =
vl

vmax
+KP (sl � el)�K✓�✓

Pr =
vr

vmax
+KP (sr � er) +K✓�✓.

We have found this approach to produce very reliable autonomous trajectories that
can be easily implemented and maintained. To create this implementation, we have fol-
lowed some of the available resources, but we have written all our own code so that we
understand the ideas better.

Additional controls

State machine

The subsystem we use to manipulate cubes has several parts whose actions need to be
coordinated. We use a state machine to make sure that everything stays in sync. The state
machine looks like this:

Drive

Seeking

Pulling in

Clamp cube

Transport

Extend pusher

Drop cube

Retract pusher

Here are the details of the states:

Drive The intake is in, rollers are in, clamp is closed, and pusher retracted. The intake
motors are off.

Seeking The intake is out, rollers are out, clamp is open, and pusher retracted. The intake
motors are on.

Pulling in The intake is out, rollers are in, clamp is open, and pusher retracted. The
intake motors are on.

Clamp cube The intake is in, rollers are in, clamp is closed, and pusher retracted. The
intake motors are off.

Transport The intake is in, rollers are in, clamp is closed, and pusher retracted. The intake
motors are off, and the lift is raised to driving height.

Extend pusher The intake is in, rollers are in, clamp is closed, and pusher extended. The
intake motors are off.

Drop cube The intake is in, rollers are in, clamp is open, and pusher extended. The intake
motors are off.

Retract pusher The intake is in, rollers are in, clamp is open, and pusher retracted. The
intake motors are off.

The operator moves between these states with a button press. There are also button
presses to return to the Seeking state and the Drive state.

Autonomous selector

We have had problems in the past with using the Smart Dashboard to select our au-
tonomous mode because network tables sometimes does not transmit the data at the right
time. Because of this, we use a DIP switch to choose our autonomous mode. We use nine
switches:

1 Select whether we begin in the center position.

2 Select whether we begin in the left or right position.

3 Select whether we go to the scale or switch if the game data begins with “LL”

4 Select whether we go to the scale or switch if the game data begins with “LR”

5 Select whether we go to the scale or switch if the game data begins with “RL”

6 Select whether we go to the scale or switch if the game data begins with “RR”

7 Select whether we go to the left scale from the side or null zone in case we have a
partner who is also going to the scale.

8 Select whether we go to the right scale from the side or null zone in case we have a
partner who is also going to the scale.

9 Select whether to place second cube in switch or scale.

